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Asymmetric life-history decision-making in butterfly larvae
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Abstract In temperate environments, insects appearing
in several generations in the growth season typically have

to decide during the larval period whether to develop into

adulthood, or to postpone adult emergence until next sea-
son by entering a species-specific diapause stage. This

decision is typically guided by environmental cues expe-

rienced during development. An early decision makes it
possible to adjust growth rate, which would allow the

growing larva to respond to time stress involved in direct

development, whereas a last-minute decision would instead
allow the larva to use up-to-date information about which

developmental pathway is the most favourable under the

current circumstances. We study the timing of the larval
pathway decision-making between entering pupal winter

diapause and direct development in three distantly related

butterflies (Pieris napi, Araschnia levana and Pararge
aegeria). We pinpoint the timing of the larval diapause

decision by transferring larvae from first to last instars from

long daylength (inducing direct development) to short
daylength conditions (inducing diapause), and vice versa.

Results show that the pathway decision is typically made in
the late instars in all three species, and that the ability to

switch developmental pathway late in juvenile life is

conditional; larvae more freely switched from diapause to
direct development than in the opposite direction. We

contend that this asymmetry is influenced by the additional

physiological preparations needed to survive the long and
cold winter period, and that the reluctance to make a late

decision to enter diapause has the potential to be a general
trait among temperate insects.

Keywords Diapause/direct development ! Seasonal
polyphenism ! Phenotypic plasticity ! Lepidoptera !
Developmental constraints

Introduction

Decision-making is ubiquitous in nature, and has typically

been studied over short time scales, for example during
foraging (Stephens and Krebs 1986), mating events

(Andersson 1994), or in the choice of egg substrates (Jaenike

1978). The evolution of decision-making is most often
studied in the context of optimality models, and the genetic

architecture of individuals behaving ‘‘optimally’’ is pre-

dicted to be favoured by selection (Krebs and Davies 1993;
McNamara and Houston 1996). Indeed, there are a great

many works in the literature that provide evidence for

optimality in nature (Krebs and Davies 1993; Alcock
2009), implying a strong selection on decision-making

mechanisms (Stearns 1992; Stearns and Hoekstra 2000;
Gotthard 2008). However, some decisions are made well

before they become functional. Some of these decisions are

‘‘crossroad decisions’’ that are made early in life and affect
growth and development patterns as well as the life history

of the individual (Gotthard 2008). One example of such a

decision with long-term implications for an individual’s
life history is the larval pathway decision of temperate

insects: whether to continue growth and development into

the adult stage during the same season or postpone adult
emergence until the next season by arresting growth and

development and entering diapause before the onset of

harsh winter conditions (Gotthard 2008).
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Temperate insects can have one or several reproductive

generations per season, but typically spend the inhospitable
winter period in a species-specific diapause resting state

(Danilevskii 1965). Species overwintering as eggs are

typically either obligatory univoltine (e.g. Carriere et al.
1996; Saulich and Musolin 1996) or have a maternally

influenced diapause determination (e.g. Koevos and

Tzanakakis 1991; Shintani and Higuchi 2008). In bi- or
multivoltine species overwintering as large larvae, pupae or

adults, each individual must decide whether to develop
directly or delay reproduction until next season. This

decision is typically dependent on the conditions experi-

enced by the larvae (Danilevskii 1965). In general, indi-
viduals develop directly into reproductively active adults if

their offspring are likely to have time to reach the species-

specific diapause stage before growth and development is
hampered by the onset of winter. Direct development is

favoured early in the reproductive season and diapause

development later in the season, and during a time window
in-between, some individuals enter one developmental

pathway and some the other (Wiklund et al. 1992).

The larval pathway decision is typically dependent on
seasonal cues such as daylength (e.g. Danilevskii 1965;

Solbreck 1979; Yata et al. 1984; Eizaguirre et al. 1994;

Friberg et al. 2008), temperature (e.g. Danilevskii 1965;
Nylin 1992; Eizaguirre et al. 1994; Wedell et al. 1997;

Friberg and Wiklund 2010), and in some phytophagous

species also on the larval host plant (Wedell et al. 1997;
Hunter and McNeil 1997; Friberg et al. 2008; Friberg and

Wiklund 2009, 2010). Long daylength and high tempera-

tures provide cues for early season and direct development,
whereas shorter daylengths and lower temperatures provide

cues that winter is approaching and promote diapause

development (Wiklund et al. 1991, 1992).
The larval decision whether to enter diapause or direct

development has been described as a ‘‘developmental

switch’’ (sensu West-Eberhard 2003) that initiates down-
stream induction of generation-specific differences in life

history, morphology and behaviour (Gotthard 2008).

Whereas much research attention has been devoted to the
adaptive significance of having different seasonal morphs

(e.g. Shapiro 1976; Tauber et al. 1986; Moran 1992;

Kingsolver 1995), the evolutionary and ecological signifi-
cance of the decisionmechanism has not been given the same

attention. Likewise, the proximate causes of the diapause

induction in terms of the cues of importance (see above) and
its proximate determination (e.g. Danilevskii 1965; Hodkova

and Hodek 2004) are well understood in a few model sys-

tems, but for most species little is known about when (i.e. the
developmental stage or larval instar) the pathway decision is

made (Danks 2007). The available evidence consists of

scattered data from different insect groups (reviewed in
Danks 1987), and for butterflies, which are the prime targets

of this study, the diapause decision-making is best studied in

the closely related pierids Pieris rapae (Barker et al. 1963)
and Pieris brassicae (Danilevskii 1965). In these species,

which overwinter in the pupal stage, the evidence suggests

that the decision is made in the ultimate or penultimate larval
instars. Some other insects make their pathway decision as

young larvae, and in yet others the decision point is located

just before entering diapause (Danks 1987, 2007).
Furthermore, previous studies dealing with the timing of

the pathway decision in insects are typically descriptive,
and rarely include an evolutionary perspective on the

decision-making. It is possible to envisage both costs and

benefits of deciding early on, and of waiting until the last
minute, since an early decision makes it possible to adjust

growth rate in good time to reach the reproductive stage

while it is still favourable (Abrams et al. 1996), whereas a
last-minute decision allows the larvae to use up-to-date

information about how they are positioned in the season

and whether it is favourable to develop directly or enter
diapause (Danks 2007).

It is also largely unknown whether the same processes

act in parallel in different species experiencing similar life
histories in terms of diapause strategy. In this study, we

investigate the diapause decision in three distantly related

butterflies that all have the ability to overwinter in the pupal
stage, and that have all been used as model organisms in

studies of seasonal polyphenism in morphology, behaviour

and colouration. We study one pierid butterfly, the green-
veined white (Pieris napi), and two nymphalid butterflies

from different subfamilies: the satyrine speckled wood

butterfly (Pararge aegeria) and the map butterfly (Aras-
chnia levana) belonging to the subfamily Nymphalinae.

Without forestalling a future phylogenetic analysis of the

evolution of diapause stages in butterflies, the ability to
undergo pupal diapause in these three species is likely to

have originated separately; the closest temperate relatives to

A. levana overwinter either as adults (e.g. Inachis io and
Aglais urticae: Wiklund et al. 2007) or are migratory and

lack a proper diapause (e.g. Vanessa atalanta: Stefanescu
2001; Mikkola 2004; and Vanessa cardui: Stefanescu 2007;
Nesbit et al. 2009). Apart from a closely related species

(Lasiommata petropolitana: Gotthard 1998), P. aegeria is

the only species among the satyrines in the Northern
hemisphere with the ability to enter pupal diapause, and

although most temperate relatives to P. napi enter pupal

diapause, other pierids—including the fellow pierine Apo-
ria crataegi—diapause as young larvae (Eliasson et al.

2005). Hence, the distant relationship between the three

species of interest makes it possible to tentatively assess the
generality of the processes shaping diapause decision-

making mechanisms in growing butterfly larvae.

In this study, we pinpoint the timing of the larval dia-
pause decision in our three study species. By transferring
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larvae between light regimes and recording their propensity

to enter diapause or direct development, we show several
similarities in life-history decision-making among the

species, and highlight how adaptive and nonadaptive pro-

cesses most likely interact to shape the larval diapause
decision in temperate butterflies.

Materials and methods

Study species

The green-veined white (P. napi) is a widespread butterfly
with subspecies covering most of the Northern Hemisphere.

In Sweden, this butterfly has three generations in the south,

2–3 generations in central Sweden and is univoltine in the
northernmost part of the distribution (Eliasson et al. 2005).

Eggs are placed singly on a suite of crucifers, and the larvae

go through five instars before pupation.
The map butterfly (A. levana) is spread almost

throughout Eurasia, and is currently expanding its distri-

bution in Europe in both the north and south directions. In
Sweden, this species arrived at Skåne (the southernmost

county) 10–15 years ago, and the map butterfly is now

established throughout the southern third of the country,
where they appear in two generations per year. This species

is also well known for being seasonally polyphenic, with

the spring generation having an orange dorsal wing pattern
and the summer generation being strikingly different—

blackish with a white band traversing the dorsal side of the

wings (e.g. Windig and Lammar 1999). Eggs are laid in
clutches of 8–15 on stinging nettle (Urtica dioica), and
larvae develop through five instars before pupation.

In Sweden, the speckled wood butterfly (P. aegeria) has
a disjunct distribution, with a southern population having

immigrated into Sweden from the south in 1939 and a

northern population that has been present for as long as
there are records (Nordström 1955). Interestingly, the two

populations differ in life histories, as they appear in 4–5

cohorts per year in the south, with a complicated lifecycle
(Van Dyck and Wiklund 2002; Wiklund and Friberg 2010),

as they are able to overwinter as either pupae or third-instar

larvae (Wiklund and Friberg 2010). This leads to a com-
plex phenology with individuals that have spent the winter

as pupae eclosing in April and May in a spring flight

period. Meanwhile, the overwintering larvae break their
diapause and develop into pupae, and about a month later

this cohort ecloses into a second flight period. The off-

spring of two spring cohorts develop directly (without
diapause) into two separated summer cohorts (Van Dyck

and Wiklund 2002). In central Sweden this species is an

obligatory pupal diapauser (Gotthard and Berger 2010),
and typically appears in a single large generation per year,

but occasionally flies in a partial, small, directly developing

summer generation (Eliasson et al. 2005).

Experimental protocol

Green-veined white (Pieris napi)

All experimental larvae descended (first- or second-gen-
eration offspring) from 16 P. napi females that were col-

lected in the Stockholm area in late July 2008. Females
were allowed to lay eggs on their crucifer host plant, garlic

mustard (Alliaria petiolata). Eggs were kept at room

temperature until they hatched, when the larvae were
transferred to the experimental conditions. The experiment

was conducted in two replicates. First we performed a

large-scale study to detect the broad timing of the larval
pathway decision by transferring eggs and larvae of all

instars between a long day and a short day treatment, and

then we replicated the experiment by only transferring
larvae of the last three instars (III–V) (see ‘‘Results’’).

In the first replicate, a total of 254 newly deposited eggs

were divided equally between two climate cabinets
(Termaks Series KB8000L; Termaks, Bergen, Norway): in

one, a long day treatment induced direct development

(20:4 h light/dark); in the other, a short day treatment
induced diapause (16:8 h light/dark). A constant tempera-

ture of 23"C was maintained. As the larvae hatched they

were kept in pairs in 0.5 L plastic jars, and they had
ad libitum access to their food plant A. petiolata. Larvae
were inspected on a daily basis, and a fraction of the larvae

at each instar were transferred in one of two directions
(from short to long day and vice versa). Due to rapid larval

growth and some problems with the timing of the transfer of

larvae in intermediate instars, sample sizes were uneven,
with larvae in instars II–IV moved from a long to a short

daylength being somewhat underrepresented. The butter-

flies were individualized as pupae, and individuals that did
not enter direct development were kept at 23"C for at least

3 weeks after pupation before they were classified as having

entered diapause. A total of 216 of the 254 individuals
(85%) that were used in the experiment survived into the

pupal stage. Direct developers were sexed as adults,

whereas diapausers were sexed as pupae after not having
eclosed 3 weeks after pupation, taking advantage of the fact

that females have two genital slits on the underside of the

pupal abdomen, which are easily distinguishable from the
single genital slit visible in male pupae (e.g. Jackson 1890).

As the first replicate showed that the larval decision

whether to enter direct or diapause development is induced
in the later larval instars (III–V; see ‘‘Results’’), we then

focused on these three stages and initially involved 120

larvae from the laboratory stock population (see above).
The larvae were divided between the same two climate
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cabinets (short and long daylength treatments), and were

reared singly in 0.5 L jars with constant access to A. pet-
iolata. Larvae were then reciprocally transferred between

the two cabinets at the beginning of instar III, IV or V, and

all larvae were weighed at transfer to definitely determine
their instar affiliation. As above, pupae were kept at 23"C
for at least three weeks after the pupation event before they

were classified as diapause developers. Direct developers
were sexed at eclosion, whereas diapausing individuals

were sexed as pupae. Survival was high among the larvae,
and 111 of the initial 120 larvae (92.5%) survived until

pupation. In P. napi, as well as in A. levana and P. aegeria,
mortality was highest in the first instar, whereas it was
possible to score all larvae that reached the pupal stage as

having either eclosed into adulthood or decided to diapause

3 weeks after the pupation date.

Map butterfly (Araschnia levana)

On 29 July 2009, 16 females were collected in Ålstorp

(latitude N55"490000, longitude E12"580000) in southernmost

Sweden. Females laid eggs in 1 L jars with access to the
host plant, stinging nettle (Urtica dioica). Egg strains were

incubated in Petri dishes on moist filter paper in climate

cabinets, maintaining 23"C until hatching. Because larvae
of this species are gregarious until the penultimate or

ultimate instar (Eliasson et al. 2005), the newly hatched

larvae were transferred in groups of five into 0.5 L jars
with ad libitum access to stinging nettle into the experi-

mental treatments. In total, 300 newly hatched larvae were

divided between a short day (12:12 h light/dark, 23"C)
diapause-inducing treatment and a long day (20:4 h light/

dark, 23"C) treatment inducing direct development. In each

of the five instars, 30 larvae were transferred in both
directions. All larvae were individualized in the fourth

instar and reared in single 0.5 L jars until pupation. Adults

were sexed upon eclosion, whereas pupae that were une-
closed 3 weeks after pupation were considered to have

entered diapause and were sexed as pupae.

Speckled wood (Pararge aegeria)

The experiment included larvae from both populations of
the disjunct Swedish distribution, and was conducted in

two replicates. Before the first replicate, two already mated

females from the central Swedish population were col-
lected in the Stockholm area in summer 2008. Offspring of

these females were allowed to overwinter as pupae in

outdoor conditions on the roof of the biology laboratory
buildings at Stockholm University, and taken into the

laboratory for eclosion and mating in early April 2009. The

first replicate then included 22 larvae from 7 successfully
mated central Swedish females tested together with 39

first-generation offspring of 8 females collected at Ransvik,

Skåne, in April 2009, representing the southern population.
Females were allowed to deposit eggs on annual meadow

grass (Poa annua) in 1 L plastic containers, and eggs were

incubated at room temperature until hatching. Newly hat-
ched larvae were placed in individual plastic jars (0.5 L)

with ad libitum access to P. annua in either diapause-

inducing short day conditions (15:9 h light/dark, 17"C) or
direct development-inducing long day conditions (21:3 h

light/dark; 17"C). Cohorts of larvae were then transferred
between experimental conditions in instars II–IV. Directly

developing individuals were sexed after eclosion, and di-

apausing individuals were sexed after having spent 25 days
in the pupal stage without eclosing into adults. The second

replicate followed the same protocol and included 64 off-

spring larvae from 13 females collected in the Stockholm
area in June 2009. Based on results from the first replicate,

larvae were transferred between experimental conditions in

the penultimate (III) or ultimate (IV) instar (see ‘‘Results’’).

Statistical analysis

The timing of the larval pathway decision was initially

explored for each species in logistic regression models

using pathway (diapause = 0, direct development = 1) as
a binomially distributed response variable with logit as link

function. We divided each dataset between larvae trans-

ferred from long to short daylength and those transferred in
the opposite direction, as the transfer directions were

designed to differently affect the larval pathway decision.

In each model we included sex and instar as categorical
predictor variables when a larva was moved between

daylengths. For P. aegeria we also included population as

an initial categorical factor.
In order to allow species to be compared, and to detect

the impacts of both the instar of transfer and the transfer

direction, we tested for differences in larval ability to
switch from one pathway to the other by comparing how

late in life the larvae could be transferred from a short day

to a long day, or vice versa, and still adjust their pathway
choice (diapause/direct development) to fit the new envi-

ronment. We did this in separate models for each species

by scoring each individual as having made the decision
based on information received in the old cabinet (0) or in

the new cabinet (1), which created a binomially distributed

response variable. This means that a larva that was trans-
ferred to the long day treatment and which later entered

diapause had already made its pathway decision before the

transfer and was thus assigned a zero (0), whereas a larva
that was transferred in the same direction and entered direct

development was assigned the value of one (1). Analo-

gously, larvae that were transferred from the long day to
the short day treatment but entered direct development
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were scored as having made their decision before the

transfer (0), whereas larvae that entered diapause devel-
opment were assigned as having made the decision under

the new light period conditions (1). The effects of the

categorical predictors sex, instar of transfer (IV or V for
P. napi and A. levana and instar III and IV for P. aegeria)
and transfer direction (long day ? short day/short day ?
long day) were tested by applying logistic regressions with
logit as link function. For P. napi and P. aegeria we also

included the effect of replicate in the initial model, and for
P. aegeria we also tested whether the population that the

experimental larvae descended from (northern or southern

population) had an effect. Nonsignificant factors and
interactions were sequentially dropped from the models.

Results

The larval responses to transfer between daylengths were

highly similar between species (Table 1). In all species,

virtually all larvae that were transferred to the short day-
length in the early instars decided to enter diapause,

whereas larvae transferred from short to long daylengths as

young larvae entered direct development. Larvae trans-
ferred later during development were either able to adjust

their decisions to fit the new circumstances, or they had

already made their decisions in the original light environ-
ment (Table 1). The sex of the individual did not affect the

timing of the pathway decision in any of the three species

when transferred into the long day treatment (Table 1), and

Table 1 Sample sizes and
pathway destinies for larvae of
P. napi, A. levana and
P. aegeria that were transferred
between long day and short day
treatments in different instars
(left side of table); the models
obtained from a logistic
regression with pathway
[diapause (0), direct (1)] used as
response variable and the sex of
each larva and the instar of
transfer used as predictor
variables (right side of table)

Significant differences are
highlighted in bold
a Six of 13 males entered
diapause whereas only 1 of 18
females entered diapause when
transferred to the short day
treatment in the ultimate instar
b No variation in dataset

Instar Pathway Statistics (log. regr.)

Direct Diapause Dir. dev. (%) v2 df P

P. napi

Long day ? short day

I 1 29 3.3

II–III 2 32 6.3 Sex 0.29 1 0.5886

IV 11 24 31.4 Instar moved 86 4 <0.001

V 49 7 87.5

Short day ? long day

I 26 0 100

II–III 44 1 97.8 Sex 0.046 1 0.83

IV 43 2 95.6 Instar moved 73.9 4 <0.001

V 22 34 39.3

A. levana

Long day ? short day

I 0 29 0

II 0 29 0 Sex 0.68 1 0.41

III 0 28 0 Instar moved 126.5 4 <0.001

IV 11 18 37.9

V 27 0 100

Short day ? long day

I 30 0 100

II 26 0 100 Sex 0.14 1 0.71

III 29 0 100 Instar moved 54.8 4 <0.001

IV 29 0 100

V 15 15 50

P. aegeria

Long day ? short day

II 0 10 0 Sexa 7.45 1 0.0063

III 0 22 0 Instar moved 57.1 2 <0.001

IV 7a 24a 22.6

Short day ? long day

II 12 0 100 Sex NAb NA NA

III 28 0 100 Instar moved NA NA NA

IV 22 0 100
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for P. napi and A. levana, sex did not affect the pathway

decision of larvae that were transferred to the short day-
length. Male P. aegeria entered diapause more easily than

females when they reached the short daylength in the last

instar (see Table 1 for statistics).

P. napi

Pieris napi larvae of both sexes (Table 1) behaved simi-

larly in both replicates, and the pathway decision was
strongly dependent on the timing of the transfer between

cabinets (Table 1). Larvae that were transferred to their

final cabinet as eggs or in instars I–III typically followed
the larval pathway triggered in that final cabinet, as did the

majority of larvae transferred in instar IV (Table 1). Larvae

that were transferred in instar V typically did not switch
their developmental response in accordance with the new

daylength to which they had been transferred (Table 1).

There was no difference in the ability to adjust to the new
environment between the different sexes (v1

2 = 0.36,

P = 0.85) or replicates (v1
2 = 0.81, P = 0.37), and these

factors were thus removed from the model. Instead, the
larval potential to respond to the new daylength depended

on the transfer direction, and larvae that came from a long

daylength into a short daylength were typically more
reluctant to respond to the new environment by entering

diapause development. By contrast, most larvae that were

moved from the short to the long daylength in the penul-
timate instar switched pathways and entered direct devel-

opment, and a substantial fraction (39%) were able to

adjust their decision to the new daylength when the transfer
took place as late as in the last instar (instar moved

v1
2 = 95.3, P\ 0.001; transfer direction v1

2 = 22.4,

P\ 0.001; all interactions were nonsignificant and
removed from the model; Fig. 1a).

A. levana

The pattern exhibited by A. levana was almost identical to

that of P. napi; invariably, all larvae made their pathway
choice according to the novel environment when trans-

ferred there in instars I–III. The majority of larvae trans-

ferred in the fourth instar also had the ability to adjust their
decision to the new conditions, whereas the majority of

larvae transferred in instar V did not alter their decision to

fit the new environment (Table 1). Furthermore, as in

P. napi, A. levana larvae more easily shifted their decision
in order to enter direct development than vice versa, as

Fig. 1 Comparison of the asymmetric ability to change pathway to
fit the new environment between larvae transferred from a diapause-
inducing condition (short daylength) into an environment that triggers
direct development (long daylength) (filled squares) and larvae
transferred in the opposite direction (open circles) in a P. napi,
b A. levana and c P. aegeria. Data shown are the proportions of larvae
(± binomial 95% CI) that managed to adjust to the new environment
when transferred between environments in the penultimate and
ultimate larval instars

c
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about half of the larvae transferred from the short day to the

long day treatment adjusted to the new environment as late
as in the fifth instar and entered diapause, whereas none of

the larvae that were transferred from long day to short day

conditions shifted their continued development in order to
enter diapause (instar moved v1

2 = 69.5, P\ 0.001; transfer

direction v1
2 = 42.9, P\ 0.001; sex v1

2 = 0.40, P = 0.40,

and all initial interactions involving sex were nonsignificant
and removed from the model; Fig. 1b).

P. aegeria

The decision-making pattern in P. aegeria differed from
those of P. napi and A. levana in that the larval pathway

decision was made in the ultimate (IV) instar. Individuals

transferred between the long day and the short day treat-
ment in the third (penultimate) instar invariably made the

appropriate pathway decision for the novel conditions. In

fact, all larvae transferred from short day to long day
conditions in the ultimate instar switched pathways to

undergo direct development (Table 1). However, a sub-

stantial fraction of the larvae transferred in the opposite
direction were unable to adjust to the new environment and

entered direct development despite the short daylength in

the new climate cabinet. Hence, the larval potential to
adjust to the new environment was affected by both how

late in life the larvae were transferred (instar moved

v1
2 = 45.9, P\ 0.001) and the direction in which they

were transferred (short day to long day or vice versa;

transfer direction v1
2 = 41.5, P\ 0.001). Furthermore, a

smaller fraction of the females than males entered diapause
when transferred to the short daylength in the ultimate

instar (sex v1
2 = 7.5, P = 0.0063). Replicate (v1

2 = 0.128,

P = 0.72), population (southern/northern) (v1
2 = 3.25,

P = 0.07) and all interactions were nonsignificant and

removed from the model.

Discussion

P. napi and A. levana larvae typically make the decision

whether to enter direct or diapause development in one of

the last two larval instars (IV, V), whereas P. aegeria
decides whether to enter diapause or to continue develop-

ment in the ultimate (IV) instar. The ability to switch

developmental pathways when the environmental cues
change is, however, conditional; in all three species, larvae

can switch from diapause to direct development later in

their development than they can make the reverse switch.
This strongly implies a general difficulty in making the

decision to enter diapause development late in the larval

period, which is probably explained by the extra prepara-
tions needed to survive a long and cold winter compared

with those needed in order to start reproductive life within

1–2 weeks after pupation.
There are several possibilities that can explain the

greater ability of P. aegeria larvae to adjust their pathway

decisions well into the ultimate instar. The two other spe-
cies studied here, P. napi and A. levana, both have five

larval instars, whereas P. aegeria develops through four

larval stages. Hence, larvae of this species spend relatively
more time in their ultimate instar, and they might therefore

enter their ultimate instar proportionally earlier in their
development. Furthermore, as described above (see

‘‘Materials and methods’’), this species can also diapause

as larvae. A recent study (Wiklund and Friberg 2010)
shows that larval diapause is possible only in the third

instar; whereas most larvae survive the winter when incu-

bating at a low temperature in the third instar, no larvae
survived when the cold period hit them in the fourth instar.

Therefore, before the end of the third instar, larvae of this

species have to make the choice of whether to enter larval
diapause or continue development to the pupal stage, and

this in turn means that the decision whether to continue

development into the reproductive stage or enter pupal
diapause must wait until the ultimate instar, when larval

diapause is no longer an option. Interestingly, males

appeared to reverse a decision to develop directly instead
of entering diapause development more easily than females

when they where transferred to the short day treatment in

the ultimate instar, and future studies are needed to deter-
mine whether this is an artefact of the limited sample size

or whether it reflects sex-specific life-history demands

acting on this species.
A. levana shows little individual variation within each

treatment. The pathway decision varied only in the cohorts

of larvae transferred from the long day to the short day in
the fourth instar and larvae transferred in the opposite

direction in the fifth instar. This implies that it is possible to

shift from the direct development pathway to diapause in
the fourth instar, and from a diapause pathway to direct

development as newly moulted fifth instar larvae, and that

there is little genetic variation in the timing of the pathway
decision in this species as well. As in P. napi, the decision
whether to enter diapause or direct development is made in

one of the last two larval instars, but the data show more
variation in the timing of the decision; while a few larvae

that were transferred between light regimes in the third

instar larvae, weighing only 3–10 mg, had already made
their pathway decisions, other larvae could adjust their

decisions in both transfer directions as late as a few days

into the fifth instar, when they weighed just a little less than
100 mg. The larger variation in the timing of the decision

point in this species could arguably imply a release of

selection pressure on the pathway decision in this species
in the Stockholm area. However, during some years
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(Eliasson et al. 2005), this species appears in a partial third

generation in late August and September, and the risk of
making the wrong decision by continuing direct develop-

ment too late in the season is likely to select on the deci-

sion-making procedure in this area. It is therefore more
likely that the somewhat larger variation in decision time

present in P. napi might reflect a pattern of dispersal, with

genes immigrating from other populations that are locally
adapted to latitudes southern (or northern) to the one in

south-central Sweden, where a 16 h daylength might
indicate a time of year when it is still favourable to develop

directly without diapause.

During winter, the diapausing insects need to survive
both cold temperatures and high levels of dehydration (e.g.

see Danilevskii 1965; Hodkova and Hodek 2004 for

reviews) as well as up to 10 months of inactivity with no
chance of escaping potential predators. In order to do this

they need to be internally prepared by physiological

alterations (e.g. see reviews in Danilevskii 1965; Hodkova
and Hodek 2004; Koštál 2006), and an overwintering pupa

typically has, for example, a thicker cuticle (Yata et al.

1984) and denser tissue (Kaneko and Katagiri 2006) than a
directly developing one. We contend that the difficulties of

switching from being set for direct development into

entering diapause act generally on all pupal diapausers, and
thus can be predicted to be a general pattern in butterflies

as well as in other insects. The laboratory conditions

experienced by the larvae in this study are of course arti-
ficial, and in nature no larvae would experience such dra-

matic decreases or increases in daylength during

development. Still, this study confirms that the decision is
not made at a well-defined point in time as much as during

a short period of susceptibility, as shown by the asymmetry

of the larval pathway decision and the ability of larvae set
for diapause to alter their decisions—sometimes as late as

well into the fifth instar. Hence, the decision points in the

penultimate or ultimate instar (depending on the transfer
direction and species) detected in this study should be seen

as points of no return rather than times when the decision is

made.
The similar timing of the point of no return among the

three species implies that natural selection favours a

decision made late in larval development, when larvae
have up-to-date information about their position in the

season. The decision asymmetry—it appears to be more

difficult to revert a conditional decision to develop
directly instead of entering diapause than vice versa—is,

however, most probably better described as a develop-

mental constraint. The decision to diapause must be made
earlier in development so that the growing larva has time

to make the appropriate physiological preparations needed

to survive the many months until the following spring.

After a certain point in time, diapause is likely no longer
an option if these preparations have not been initiated.

The possible presence of conditional decisions made

before the final decision point calls for further studies. For
example, such studies could focus on the extent to which

larvae make growth adjustments in accordance with these

decisions (increase developmental rate if they choose to
continue development/decrease developmental rate if they

decide to diapause), or whether the faster growth rate of
direct developers under critical conditions is actually an

intrinsic cue, so that only those larvae that grow the

fastest have the ability to enter direct development when
time stressed.

The pattern detected in this study—that the final

decision between diapause and direct development is
made in the penultimate or ultimate instar—also has

implications for studies on decision-making in relation to

seasonal polyphenism. All of these species have been
used as model organisms for seasonal polyphenism (e.g.

Fric and Konvicka 2002; Van Dyck and Wiklund 2002;

Karlsson and Johansson 2008), and A. levana is certainly
one of the most extreme examples of seasonal polyphe-

nism in nature. Apart from their striking differences in

colouration, the two generations also differ in body
design, wing loading, dispersal propensity and resource

allocation pattern (Fric and Konvicka 2002; Friberg and

Karlsson 2010). The spring and summer generations of
P. napi differ in dispersal ability and fecundity (Karlsson

and Johansson 2008), as well as in mating propensity and

sexual maturity at eclosion (Larsdotter Mellström et al.
2010), whereas the different developmental pathways of

P. aegeria differ in the number of eyespots present on the

dorsal side of the hind wing (Shreeve 1987), as well as in
body size and fecundity (Van Dyck and Wiklund 2002;

Gotthard and Berger 2010). All these adaptive or non-

adaptive, season-specific traits must be developed down-
stream of the decision whether to enter diapause or direct

development, which may further explain why there is a

point of no return after which the larvae cannot switch
pathways after a certain size or age. We contend that the

findings in this study may be important for future studies

investigating the mechanisms of seasonal polyphenism,
which at this point have not unravelled the extent to

which the induction of diapause or direct development

functions as a developmental switch that influences a suite
of traits (see above), or whether the induction mechanism

for the generation-specific polyphenic traits is disentan-

gled from the pathway decision-making mechanism and
induced separately, although typically coinciding with the

pathway decision in nature.
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